泡泡中文

最新网址:www.xpaozw.com
字:
关灯护眼
泡泡中文 > 不朽从二零一四开始 > 第1章 自愿加班的牛马

第1章 自愿加班的牛马

2024,8月31日,晚上11:35。

杭城,某大楼内。

灯火通明。

看得出一栋楼里仍然有数不清加班的牛马。

某间办公室内数位牛马依旧在工位上不知疲倦地自愿加班。

“林枫,别忘了调参数啊!”

林枫面前的六大块电脑屏幕,不知道的还以为是看监控的。

不过林枫的工作可比看监控的无聊多了,看监控的偶尔还能看到些攒劲的劲爆画面,而林枫入目的却全是枯燥。

林枫眼前的屏幕上显示的是一系列复杂的训练数据和参数调试界面。

模型的训练进度条还在缓慢前进,CPU和GPU的占用率几乎达到了峰值。

他迅速在键盘上敲击几下,调整了几个关键参数的值。

林枫调完参数后,头也不抬地回应道:“知道了,我刚才在尝试不同的学习率。”

林枫的语气不悲不喜,像个没感情的机器人,显然他一门心思都在全力解决眼前的问题。

“这次的数据集比上次复杂得多,要是调得不对,训练结果会有很大的偏差。”坐在林枫工位一旁的王珊一边提醒,一边同样紧盯着自己面前的一堆屏幕,不断记录着实验数据。

“没错,王姐,我打算先尝试降低学习率,再加大正则化项的权重,看看能不能提高模型的泛化能力。”林枫迅速地输入了新的参数设置,然后按下了回车键,模型重新开始训练。

泛化能力是指机器学习模型对测试数据或真实世界数据的预测能力。

一个模型具备良好的泛化能力,才能在训练数据上表现良好,而且在测试数据或新的数据上也能保持较高的准确性和稳定性。

而学习率是一个控制模型在每一步训练中更新其内部参数(如权重)的速度的超参数。简单来说,它决定了模型在每次“学习”时向“正确答案”迈出多大的步子。

尝试不同的学习率就是在寻找一个合适的学习速度。

如果学习率太高,模型可能跳过最优解(即每次迈出的步子太大);如果学习率太低,模型收敛速度会很慢(即步子太小,训练过程会非常漫长)。

林枫在尝试不同的学习率,目的就是为了找到一个最适合当前模型和数据的学习速率,使得训练过程既快速又高效地达到最优结果。

说起来容易,实际上是枯燥的,而且极其枯燥。

不过人工智能的背后那面又哪有不枯燥的呢?

林枫无奈苦笑,闷头继续工作。

“训练集的准确率提升了!但是验证集的损失还在波动……”王珊突然出声,她的眼睛紧紧盯着实时更新的图表。

“别急,等它再跑一会儿看看。”林枫说道,他深知模型训练是一个反复试验的过程,急不得。

林枫不急,可是有人急。

这时,办公室的门被推开,技术部的负责人李冰河走了进来,手里拿着一杯咖啡。“怎么样,有进展了吗?”

“还在调试参数,刚尝试了一些新的设置。”面对质询,林枫机械地回答。

“很好,”李冰河点了点头,“不要急,参数调整是关键,这个模型对我们的项目非常重要,要确保它的精度和泛化能力。”

林枫和王珊互相对视了一眼,点了点头。

紧接着李冰河接着说道:“你们也别太心急,要是这个模型不能奏效我们就还用最开始的那个模型!”

林枫无语,一开始说“微调”模型的是你,现在说这个模型不奏效就用最开始模型的也是你。

林枫很想骂人,调来调去还踏马用第一版是吧?

别说是骂人,看到李冰河那贱兮兮的表情更是杀人的心都有。

『加入书签,方便阅读』
热门推荐
年代:从插队知青开局!华娱之我要做大亨玩具帝国从拍特摄开始征战超凡诸天被迫加入妖精籍的我成为至强网游之鹏婷恋曲实在不行炸了吧!华娱:只想炒CP的我却成顶流拳渡星河劫御兽:我创建了星辰教派
网站地图