现代军队的组织是标度对称。以三三制为例:一军三师,一师三团变成一颗树的情景。树根是军,树干是师树叶是士兵。军队的指挥是递归过程,军长给师长下令,师长给团长下令班长指挥士兵。每个指挥者仅仅指挥若干个下属即可。
分形都存在对应的递归实现。以rpns垫片为例。:如图所示,面积逐渐减少,最后为0。:让人震惊的另类递归构造。1在三角形内任意取一点,如右图中的十字星位置,2随机选三角形一个顶点和十字星点连接,取连线中点,用五角星表示。3使用步骤2生成的五角星点为顶点,重复步骤2。最后也生成了rpns垫片。注意:在表面上看此递归过程和上图中的递归不同,但实质都是依赖上次构造过程的结果来进行。由居里对称定理来分析,初始值是随机,过程对称,群体结果居然是对称!似乎不满足定理。但初始值随机,则全部随机的初始值可以布满整个三角形内部,意味着初始值的群体是对称的。即消除了个性的群体属性是对称的,对称的原因&;对称的过程&;对称的群体结果。那么任意一个随机初始值,不过是这个对称过程的具体实施。结果是群体的!假设结果也是个体的,则初始群体的对称&;结果群体的对称,单个初始和单个结果是否对称,则完全不知!此刻是个体&;个体,而非个体&;群体并非所有的随机初始&;对称过程&;对称群体结果,但群体结果的和是对称的。rpns垫片内包含任意一维的图形。按照生成方法,结果让人很难相信,一个所有条件都固定的生成方法居然可以包含任意一维图形。但按照生成方法,由于初始值是随机的,出现任意的一维线条组合似乎容易接受。在构造中,新增加的2个线段突起的方向固定是起点到终点的左边。若让突出方向变为随机,则线段也可以包含任意一维图形。你能想象到的一维任意复杂图形,都没有rpns垫片和随机线段复杂!这种包含了全部一维图形的一维图形,我们称它实现了一维图形的遍历。普通的线段内,存在平移对称或旋转对称,无法满足遍历性。
最早研究分形的几何图形的人是法国人本华曼德博nbr,他使用复数递归给出了极其漂亮的分形图形,这些图形充分阐述了分形的特征,自相似,也就是标度对称。
思考:
1我们的大脑,保持分形结构,存在大量褶皱,使得大脑皮层的面积达到很高的数值。我们大脑的神经细胞神经元连接方式的可能性居然比宇宙中的原子数目还多!神经元的连接方式如果能遍历任意组合,那么我们将成为神!实际上我们大脑负责处理多数事物的神经元连接方式组合远远超过其他动物,因此在竞争中所向无敌。但组合方式数量始终是有限的在很多项目上,因为处理神经元数目少,所以据劣势。比如视力s隼,嗅觉s猪但理性思考和抽象思考方面的能力,使得人极度膨胀,丧失理性,有着成为神的冲动。
2不同尺度海岸线的曲折类似状况,蕴含着标度对称,就意味着存在遍历一维曲线的能力。通常可以使用随机来模拟海岸线。海岸线决定于大陆板块的运动、冰川变化、河流泥沙的沉积。而这些和地球内部流体运动、大尺度气温变迁相关联。可以说着小尺度上,决定海岸线的因素很随机,在大尺度上也很随机,直到地球板块阶段,大致轮廓才能确定。这也正是随机线段可以模拟海岸线的原因。
3地质运动和火山这两种造山起因完全不同,所以山的外在表现特征不同。撇去山上的植被,无论规模大小,都存在不同程度的相似性。山的体积是有限值,而表面积无限扩充。和海绵相同,都是介于二维和三维的对象。火山喷发时,会产生大量浮石,可漂浮在水面上。这些浮石都是海绵类型的分形结构。由于孔状连接毕竟是岩石材质,可以作为搓脚石,去除体表死皮组织。
4递归的本质给出了一个限制,上次递归的结果作为本次递归的初始值,那么意味着递归的输入和输出是同一类型。如果输入和输出完全不同类型,比如能量和时间,那么无法完成递归。在物理系统中,可通过变换过程的作用方式,使得输入输出完全同类型。最简洁的类型:输入输出是纯粹的数值,没有任何单位。在物理上称为无量纲方法,由美国人n提出的定理来处理。在数学上,数值没有区别,但是存在数的组织方式的差异标量、矢量、矩阵。当组织方式相同时,递归的方法一般称为迭代过程一般称为算子。数值大小上的差异:在计算机实施运算时,数值差异太大,导致表达误差的放大。让输入输出的数值大小接近最好是在1附近,最大程度地保持精度,称为归一化处理。递归结束时,输出为最终结果,那么递归过程的中间产物从几何角度来看,就是不断接近最终结果的过程,可把最终结果称为不动点。如果中间结果和不动点之间的距离在持续减小,则过程是单调的。现实的世界总是存在误差,无法完美地抵达不动点。通常在中间结果在小范围变动而不逾越范围时结束递归,称递归停滞,并以此时中间结果为最终结果。
分形必然意味着递归,但递归不一定产生分形!分形是递归的充分条件,递归是分形的必要条件。意味着分形和递归两者不对称。那么产生分形和不产生分形的递归,存在什么差异?
在自然界,任何变动,都可以从多个角度来观察。从能量的角度,系统任何变动都可以分类为获得能量、能量不变、失去能量中的一类。失去能量过程,能量最低为0,无法为负。因此这类过程不可能产生遍历状况,因为能量比初始大的情况永远无法出现。获得能量过程,如果能量持续增加,最后到无限大。但能量低于初始值的情况无法出现。因此如果递归过程出现遍历,就必须:1能量放大。2能量不是单调放大,中间出现反复震荡,进入低能量状态。能量不变,则能量任意转换。由能量转换的不对称性,最终能量变为无价值的热,无法实现能量遍历。能量无限大,这个无法在我们的宇宙出现。因此换视角,以状态的视角来观察递归过程。状态变动存在范围,那么观察状态是否遍历整个范围。状态变动,如果存在不动点,无论是单调接近还是震荡接近,都意味着无法遍历。如果中间结果的变动范围:1始终不存在收缩,2并且无规律可寻,那么意味着遍历变动范围一直在增加,可能出现吗?!我们把遍历状态的过程称为混沌过程。
在一个区间内出现遍历,和无限制的遍历,是等效的吗?遍历意味着标度对称,那么有限区间可以放大到无限,因此遍历等效。因此观察递归是否产生分形,则观察递归是否存在上述的两个特性。
递归出现分形与否,有时候仅仅只是某个数值的微不足道的差异。对于这种差之毫厘,谬以千里的情况,我们称之为不稳定状态。而毫厘产生千里的效果,称为蝴蝶效应。迭代过程表达式1,当初始在01之间时,反复进行迭代,信息完全的过程&;信息消失。分解这个过程为两部分:1信息完全&;信息完全的过程&;信息完全。2微小的未知信息&;信息完全的过程&;数量未知未知信息。综合两部分,可以推理出,虽然未知信息的数量未知,但肯定和原始信息的数量相当,导致综合结果对应的信息消失!那么递归过程必然实现了将微小的误差放大到足以扰乱正常信息的程度。递归过程放大误差信息。本质是误差的数值逐渐变大。而递归结果存在范围,则意味着原始的数值无法增加,原始信息量和误差信息量相比,逐渐降低。
2若将精确初始值当作误差来看待,则递归过程必将中间结果放置到允许范围的任意位置,假设存在某些无法抵达的位置,则意味着误差信息是有规律可循的!因此产生混沌的递归必然蕴含着遍历。
3计算机的精度截断,意味着未知信息的丢失。事实上,在误差放大过程中,不断依赖从前是更微小的数值补充未知信息。截断意味着补充丧失。在递归计算时,出现重复情况。比如递归进行2000次,发现结果和初始值完全相同!那么这个递归就存在周期为2000的周期性。当精度提高,发现周期性延长。若不存在精度截断,则不存在周期性。
4计算机不可能模拟真实的天气变化轨迹,但却可以尝试让真实天气轨迹为阴影轨迹。进行气候模拟时,初始的气象观测值非常多,都存在误差。多次计算机模拟力争找到阴影轨迹为真实轨迹的情况。事实上在解释计算结果为真实天气状况时,大量轨迹对应的却是数量相对很少的气象状况。最终给出了各种气象状况的可能性。
5现实生活中观察周期性的变动。轻轻打开水龙头,缓慢生成水滴,最后滴落。统计一分钟下落的水滴个数。然后轻微拧大水龙头,增加出水量。继续统计一分钟水滴个数。会发现,水滴个数不变,仅仅是大水滴、小水滴、大水滴、小水滴这样的方式滴落。当出水量大到一定程度,水滴个数突然变成原来的两倍!在原来滴落两滴的时间内,四滴水滴落。继续拧大水龙头,观察水滴个数,发现增加的规模都是两倍。以原始两个水滴之间的时间间隔为单位,统计此时间段内水滴的个数,则水滴个数就是2、4、8、16这样的序列。没有其他情况出现!当水滴个数增加到一定程度后,水滴序列不再有规律,水滴似乎随机下落,混沌出现!继续放大出水量,水滴之间无分割时间,变成小水流。注意水龙头下面用容器接水,避免浪费。此时不能用称重的方法来统计水滴个数,因为大小不同。